‘Looked but failed to see’ collisions

August 2017
Fact of the day #1: It is difficult to detect motorbikes and judge their speed, because they are small.

Screenshots from 1975 UK ‘Think Once, Think Twice, Think Bike’ public information film
Fact of the day #2: It is difficult to detect and judge the speed of things at night, because it is dark
In short...

- These two things combined mean that motorcycles are doubly disadvantaged at night.

- A simple change to lighting patterns on motorbikes can result in safety benefits.

- A range of other measures beyond this (lower speeds, greater active searching for motorbikes by car drivers, greater care by bikers at night) are sensible.
Table of contents

1. Conspicuity
2. Judging speed and time to contact
3. Novel motorcycle lighting – lab work
4. Novel motorcycle lighting – trials in New Zealand
5. Conclusions
Conspicuity
‘Looked but failed to see’ collisions

- Collision statistics show that a car driver violating a rider’s right of way at a junction is a very common accident scenario.

 “Sorry mate, I didn’t see you”

- Calls for increased conspicuity of motorcyclists are common (e.g. Williams & Hoffman, 1979; Olson, Hallstead-Nussloch & Sivak, 1981; Hole, Tyrrell & Langham, 1996; Rößger, Hagen, Krzywinski & Schlag, 2011)
‘Looked but failed to see’ collisions

- Data on contributory factors to injury accidents hint at multiple causes (DfT statistics)

Diagram:

Did not look → Inadequate looking → Adequate looking but did not see → Looked, saw, but failed to judge approach

Conspicuity

© 2017 TRL Ltd
Different types of conspicuity

- Visibility = “Can you see the motorcycle here?”
- Search conspicuity = “Where is the motorcycle?”
- Attention conspicuity = “What do you see?”
- Cognitive conspicuity = Expectation
Conspicuity of motorcyclists

- Many studies since the 1960s have shown that interventions such as bright clothing and extra lighting can improve the visibility and conspicuity of motorcycles - generally positive effects shown on measures such as detection time and visibility ratings in laboratory or roadside studies (see Helman et al., 2012 for a review)
Background is crucial (e.g. Hole et al., 1996)
Palmer (2010)
The problem of night time

- Motorcycle-car collisions are over-represented at night relative to daylight hours (Pai et al., 2009)

- Partly because headlights are even smaller than bikes... and they can ‘blend in’ to other vehicle headlights...
The problem of night time
Around four seconds later...
So...

- Bikes are small

- (Partly) because of this they are less conspicuous

- This is especially problematic at night as bike headlights can blend into the background

- One approach we could take is to make bikes bigger and more ‘distinctive’ (including at night) to make them more conspicuous
‘Looked but failed to see’ collisions

- It isn’t JUST about conspicuity...
‘Looked but failed to see’ collisions

- It isn’t JUST about conspicuity...

Did not look → Inadequate looking → Adequate looking but did not see → Looked, saw, but failed to judge approach

<-Time to contact->
Judging speed/time to contact
Time to contact
Time to contact
Time to contact
Judging time to arrival and speed

- Time to arrival overestimated for small objects – this has implications for motorcyclists approaching junctions (Horswill, Helman, Ardiles & Wann, 2005)
The problem of night-time

- Motorcycle-car collisions are over-represented at night relative to daylight hours (Pai et al., 2009)
So...

- Bikes are small

- (Partly) because of this it is more difficult for drivers to accurately judge their time to contact

- The problem may be worse at night as headlights provide almost no ‘size’ information

- One approach is to make bikes bigger (including at night) to make it easier for drivers to accurately judge their time to contact
Novel motorcycle lighting - lab work
Extra motorcycle lighting?
Motorcycles with ‘T’ formation of lighting are more quickly identified than motorcycles with a single headlight, and are fixated more rapidly.
Gould et al., 2012

- Participants viewed bikes or cars in simulated scenes under different lighting conditions – brief presentations
 - Reference vehicle was car travelling at 30mph with 4 second time to contact
 - Probe vehicle was car, motorcycle (single headlight), or motorcycle (tri headlight), -20mph to +180mph relative to reference vehicle
- Task was to detect which vehicle (reference or probe) was travelling faster
Findings
The story so far...

- LBFTS accidents are an important risk for motorcyclists
- Sometimes this is due to conspicuity
- Sometimes it is due to judgement of time to contact
- Small objects more difficult to detect, and to judge (TTC) than large ones – motorcycle headlights at night are the extreme example
- A simple engineering solution (more lights) could make a difference to this limitation – laboratory trials have shown promise both in terms of conspicuity and judgement of approach
Novel motorcycle lighting - NZ trials
Location
the future of transport.
Design

- N=400 (240 day, 160 night) – matched closely to NZ licence holders
- IV – lighting (C, V, Y)

Each participant saw three passes under each of three instruction types
- ‘Tell me what you see’ (attention conspicuity)
- ‘Tell me when you see the motorbike’ (search conspicuity)
- ‘Tell me smallest gap you would accept’ (TTC)

- DV – time from observation location (coded from video) when bike seen/ gap judged
Design (continued)

- Order of lighting counterbalanced within each instruction type (CVY, CYV, YVC, YCV, VCY, VYC)

- Measure number of other vehicles in scene when bike approaching (control for this in analysis – scene complexity)
Results – Mean TTC in seconds (StDev)

<table>
<thead>
<tr>
<th>Time of day</th>
<th>Lighting</th>
<th>Attention</th>
<th>Search</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.14 (3.37)</td>
<td>8.18 (3.79)</td>
<td>6.21 (1.95)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>4.82 (3.32)</td>
<td>8.88* (4.46)</td>
<td>6.68** (1.98)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>4.57 (3.33)</td>
<td>9.55** (4.74)</td>
<td>6.91** (2.05)</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7.77 (4.56)</td>
<td>14.48 (4.70)</td>
<td>6.50 (1.83)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>7.46 (4.37)</td>
<td>14.49 (4.70)</td>
<td>6.57 (2.11)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7.66 (4.12)</td>
<td>14.58 (4.71)</td>
<td>6.53 (2.04)</td>
<td></td>
</tr>
</tbody>
</table>

(* = p<0.05 ** = p<0.001)
Results

- V and Y lighting lead to earlier detection than control at night, but only when participants told to look for bike

- V and Y lighting lead to larger gap accepted than control at night

- Detection better during the day, and when under ‘search’ instructions
Results – Mean TTC in seconds (StDev)

<table>
<thead>
<tr>
<th>Time of day</th>
<th>Lighting</th>
<th>Attention</th>
<th>Search</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>5.14 (3.37)</td>
<td>8.18 (3.79)</td>
<td>6.21 (1.95)</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>4.82 (3.32)</td>
<td>8.88* (4.46)</td>
<td>6.68** (1.98)</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>4.57 (3.33)</td>
<td>9.55** (4.74)</td>
<td>6.91** (2.05)</td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>7.77 (4.56)</td>
<td>14.48 (4.70)</td>
<td>6.50 (1.83)</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>7.46 (4.37)</td>
<td>14.49 (4.70)</td>
<td>6.57 (2.11)</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>7.66 (4.12)</td>
<td>14.58 (4.71)</td>
<td>6.53 (2.04)</td>
</tr>
</tbody>
</table>

(* = p<0.05 ** = p<0.001)
Future work and implications
Future work (direct implications)

 Fit extra lights to motorbikes in the patterns tested here
  They help with conspicuity and judging speed of approach at night

 Motorcyclists in daylight
  Bikers need to be educated as to their relative lack of conspicuity at night, even with extra lighting – how best to do this?

 Expectancy for motorcyclists
  How best to tell drivers to look for bikes?
An aside...
Another implication – some advice for motorcyclists

- When approaching junctions, slow down, so that...
 - ...with a four-second time to contact (the ‘critical point’?) you are closer...

- ...and therefore bigger...

- ...and therefore it is easier for car drivers to judge your speed and time to contact

- The thing is...we know that motorcyclists actually travel slightly faster than surrounding traffic, e.g.
 - Walton and Buchanon (2012) – Motorcyclists observed to ride on average 10% faster than cars in observations at motorcycle accident ‘black-spots’ (but no account for demographics)
 - Horswill and Helman (2003) – Motorcycles observed to ride faster in real-world observations (gender and age controlled)

- The problem is...car drivers cannot detect this...
Some old advice

- An ex-colleague of mine once told me that I should ride with the following attitude:

 "Assume that drivers cannot see you – that you are invisible to them"

- It turns out that with respect to your approach speed this is sometimes literally true
How to change this?

- Slow down
- Fit extra lights
Thank you

‘Looked but failed to see’ collisions

Presented by Shaun Helman
Tel: 01344 77 0650
Email: shelman@trl.co.uk
References

References

Future work (interesting research)

- This was relatively easy visual search – future studies need to look at boundary conditions …
 - What about more complex scenes?
 - What about secondary task interference effects?

- Unsure how findings will transfer to naturalistic behaviour
 - Future work could explore this using instrumentation (including front-facing cameras and ‘near-miss’ detection on equipped/unequipped bikes)

- The interesting effects of oncoming vehicles...
Number of other vehicles approaching camera – effect on attention conspicuity
Number of other vehicles approaching camera – effect on search conspicuity
Number of other vehicles approaching camera – effect on gap judgement